skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bowman, Christopher_N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Decades of advances in understanding and simulating the polymerization kinetics and structural evolution that arises in free‐radical photopolymerizations of multifunctional monomers are combined into a single, first‐principles 3D model. The model explicitly accounts for polymerization features including diffusion‐controlled kinetics, oxygen inhibition, light attenuation, chain‐length dependent termination, reaction‐diffusion termination, heat transfer, composition and conversion‐dependent material properties, crosslinking effects, and species diffusion. Using the homopolymerization of 1,6‐hexanediol diacrylate as a model system, a minimum of two kinetics experiments performed at different initiation rates are required to fit model parameters. The model accurately predicts known relationships regarding oxygen inhibition, light intensity, and curing temperature for samples of different geometries and boundary conditions. The emphasis of the results herein is placed on the interactions between polymerization features, motivating the importance of a model that accommodates these features all in one simulation. The model is shown to be robust in its handling of thermal boundary conditions, alternative polymerization techniques or mechanisms, and characteristics of 3D voxel formation. The model in this work provides a useful tool for property prediction in a wide variety of applications, most notably coatings, dental materials, industrial photocuring processes, additive manufacturing, and holography, where complex interactions of the various features of polymerization play a substantial role. 
    more » « less
  2. Abstract Liquid crystalline elastomers (LCEs) are stimuli‐responsive materials capable of undergoing large deformations. The thermomechanical response of LCEs is attributable to the coupling of polymer network properties and disruption of order between liquid crystalline mesogens. Complex deformations have been realized in LCEs by either programming the nematic director via surface‐enforced alignment or localized mechanical deformation in materials incorporating dynamic covalent chemistries. Here, the preparation of LCEs via thiol‐Michael addition reaction is reported that are amenable to surface‐enforced alignment. Afforded by the thiol‐Michael addition reaction, dynamic covalent bonds are uniquely incorporated in chemistries subject to surface‐enforce alignment. Accordingly, LCEs prepared with complex director profiles are able to be programmed and reprogrammed by (re)activating the dynamic covalent chemistry to realize distinctive shape transformations. 
    more » « less
  3. Abstract A mechanochromic, programmable, cholesteric liquid crystalline elastomer (CLCE) is fabricated, and after straining, resulting in a blue shift through the visible spectrum, is returned to its initial shape and color upon heating through its isotropic phase transition. Light initiated, radical‐mediated, addition fragmentation chain transfer (AFT), facilitate permanent programming or erasure of thermoreversible shape and color by relaxing stress imparted on the strained network through reversible bond exchange. Thermoreversible strain is coupled with reversible color change and can be made permanent at any desired strain by light exposure and corresponding AFT activation, temporarily restoring nearly initial shape and color upon heating. The optical characteristics and photonic structure, inherently linked to the network, are measured as a function of strain, to confirm the reflection notch narrowing indicating that prepolymerization alignment via shearing is poor thereby causing a broad spectrum of reflected light that narrows when the material is stretched. Beyond programming a new shape and color, the reflection notch is erased and separately, photopatterned to achieve dynamic color schemes that are toggled with heating and cooling, similar to that of a chameleon's camouflaging technique that has the ability to manipulate multiple colors in a single material, also with use for strain mapping. 
    more » « less